Optogenetica: la rivoluzione per lo studio del cervello

Illustrazione artistica di un neurone con particelle sulla superficie cellulare, legata al concetto di optogenetica, con testo “OPTOGENETICA” e sito scienzemotorie.com.
15 marzo 2019

Sviluppata nei primi anni 2000, l’optogenetica – l’uso combinato di metodi genetici e ottici (leggeri) per controllare geni e neuroni – è tra le tecnologie più rapidamente avanzate nelle neuroscienze e ha il potenziale per rivoluzionare il modo in cui gli scienziati studiano il cervello

Cos’è l’optogenetica

L’optogenetca è metodo sperimentale nella ricerca biologica che coinvolge la combinazione di ottica e genetica in tecnologie che sono progettate per controllare (mediante l’eccitazione o l’inibizione) eventi ben definiti nelle cellule del tessuto animale vivente.

A differenza dei metodi sperimentali precedentemente sviluppati per il controllo della luce, l’optogenetica consente ai ricercatori di utilizzare la luce per accendere o spegnere le cellule con notevole precisione e risoluzione (fino a singole cellule o persino regioni di cellule) in animali viventi e in movimento. Di conseguenza, può essere usata non solo per controllare comportamenti specifici negli animali, come innescare o bloccare la paura o il dolore, ma anche per dedurre in tal modo i contributi delle singole cellule a quei comportamenti.

Fin dagli anni ’70 molti laboratori hanno identificato varie proteine trans-membrana dette opsine, che reagiscono alla luce (ciascuna ad una differente frequenza) aprendosi e permettendo il passaggio selettivo di ioni carichi attraverso di esse. Nei tardi anni ’90 in alcuni laboratori vennero svolte le prime ricerche per sfruttare queste proteine nel controllo dei neuroni, in un modo molto elegante. Fornire a quelli che si vogliono studiare, e solo a quelli, delle opsine che, attivate da una luce, reagiranno aprendosi e portando all’eccitazione od alla inibizione della cellula.

Nonostante la cosa fosse concettualmente semplice, è solo nel 2005 che l’equipe di K. Deisseroth, MIT, riesce a pubblicare un articolo rivoluzionario: integrando una di queste opsine, chiamata Channelrhododopsina-2 (ChR2), a quelle normalmente presenti in una cultura di cellule cerebrali murine, i ricercatori erano in grado di attivare i neuroni con una precisione temporale del’ ordine dei millisecondi accendendo un laser.

Ora l’optogenetica è diventata una tecnica relativamente diffusa ed applicata su numerose specie, dai vermi ai primati non umani.

Il suo impiego può servire a confermare ipotesi o conoscenze precedentemente acquisite in altro modo. Chiarire il funzionamento di alcuni fenomeni, distinguere l’influenza dei vari neuroni sul comportamento della cavia dal vivo o per manipolare la mente.

È una tecnica che “consentirà in un prossimo futuro di trattare in modo efficace molte patologie del cervello”, almeno così promettono i ricercatori.

Con impulsi di luce a tempo preciso mirati a regioni o cellule tissutali mirate, l’optogenetica consente ai ricercatori di attivare o bloccare eventi in specifiche cellule di animali viventi. In un topo con una zampa resa ipersensibile al tatto. Ad esempio, la risposta al dolore può essere eliminata facendo brillare la luce gialla sulla zampa colpita, le cellule in cui sono state mirate ad esprimere un tipo di proteina microbica sensibile alla luce nota come opsina.

L’optogenetica sull’uomo

La prima sperimentazione umana che ha coinvolto l’optogenetica è iniziata nel 2016. E’ stata progettata per esplorare il potenziale uso della tecnologia per il trattamento di pazienti affetti da retinite pigmentosa ereditaria. 

La progressiva degenerazione della retina, il segno distintivo della malattia, causa gravi problemi alla vista. Si prevedeva che almeno 15 pazienti che erano ciechi o per lo più ciechi partecipassero allo studio. Ciascuno di loro avrebbe ricevuto un’iniezione di virus che trasportava geni codificanti l’opsina mirati specificamente alle cellule gangliari retiniche (RGC). Uno dei principali obiettivi del test era stabilire la sensibilità alla luce negli RGC. Di solito non sono influenzati dalla retinite pigmentosa e normalmente trasmettono informazioni visive dai fotorecettori nell’occhio al cervello. In presenza di luce blu, gli RGC che esprimevano l’opsina avrebbero iniziato a inviare segnali visivi al cervello.

L’optogenetica sembra aprire immensi orizzonti ai ricercatori, che già oggi possono modulare l’attività nervosa. Attraverso la stimolazione con fibre ottiche di proteine fotosensibili chiamate opsine prodotte ad hoc all’interno dei neuroni. Ma “con la luce è anche possibile comandare l’accensione o lo spegnimento dei geni. In una forma raffinata di epigenetica che potremmo definire artificiale che ci darà la possibilità di attivare i geni benefici e disattivare i geni pericolosi a nostro piacimento

Sebbene la misura in cui il trattamento optogenetico migliorasse la visione era incerta, i risultati dello studio erano molto attesi. Altre terapie optogenetiche sono in fase di sviluppo per una vasta gamma di malattie, tra cui il dolore cronico e la malattia di Parkinson.

Applicazioni dell’optogenetica

I metodi optogenetici sono stati applicati a una vasta gamma di domande nel comportamento e nella fisiologia. Fornendo informazioni su movimento, apprendimento, memoria, metabolismo, fame, sete, respirazione, sonno, pressione sanguigna, motivazione, paura e elaborazione sensoriale.

Sono state fatte scoperte clinicamente ispirate, contribuendo a far luce sulle attività cellulari associate a condizioni. Come l’epilessia, il morbo di Parkinson, la malattia di Huntington, l’ ictus, il dolore cronico. Il disturbo ossessivo-compulsivo, la tossicodipendenza, la depressione, la disfunzione sociale e l’ ansia.

Ad esempio, l’optogenetica ha permesso di determinare quali cellule e connessioni attraverso il cervello erano importanti nel definire e assemblare le diverse caratteristiche dell’ansia. Comprese le variazioni della frequenza respiratoria e l’evitamento del rischio, in uno stato comportamentale distinto.

 

Dettaglio stilizzato di una cellula nervosa con ramificazioni tipiche di neuroni, superficie ruvida con punti verdi, su sfondo bluastro futuristico.

 

Miglior-Libro-Ginnastica-in-Gravidanza-ATS
Scienza-in-Danza-Libro-Scienze-Motorie
Tennis-Libro-Scienze-Motorie
Giuseppe-Coratella-Libro
Nutrizione-Funzionale-Scienze-Motorie
Diagrammi didattici del sistema sensoriale umano: analizzatore neuronale, classificazione dei sensi interni ed esterni e ruoli di visione, udito, tatto e cinestesia nell’equilibrio, postura e movimento.

Articoli Correlati

Confronto visivo tra un fegato sano e un fegato affetto da steatosi epatica, con dettagli cellulari e accumuli di grasso evidenziati. In basso a destra è presente il logo di ScienzeMotorie.com

Steatosi epatica

La steatosi epatica, patologia detta anche ‘fegato grasso ‘ è la condizione che si verifica quando la percentuale di grasso nel fegato supera il 5% senza la presenza di altre patologie di danno epatico. La malattia è caratterizzata da infiltrazione di grasso nel fegato, principalmente sotto forma di trigliceridi, che viene accumulato all’interno delle cellule […]

Atleta in abbigliamento rosso in corsa con effetto di velocità, stadio gremito e logo scienzemotorie.com in basso a destra.

La velocità di picco è la causa o il “vaccino” per gli infortuni?

Lesioni muscolari negli sport di squadra Le lesioni muscolari sono tra gli infortuni più frequenti negli sport di squadra. Data la loro lunga durata di recupero e l’elevato tasso di recidiva, la loro prevenzione è fondamentale. Come discusso in precedenti articoli, migliorare la forza dei muscoli posteriori della coscia può ridurre gli infortuni in quest’area. […]

Persona con testa appoggiata, vestita di scuro, che riposa in un ambiente neutro, concetto di sonno e prestazioni atletiche.

Il sonno può migliorare le prestazioni degli atleti?

Il ruolo cruciale del sonno per gli atleti I migliori atleti e giocatori del mondo trascorrono tutti innumerevoli ore sul campo di allenamento, migliorando le tecniche, aumentando le prestazioni aerobiche, ripetendo i modelli di gioco, aumentando anche la forza in palestra o riprendendosi dalle lesioni del fisioterapista. Eppure uno degli elementi più vitali della routine […]

Mani guantate che maneggiano attrezzature scientifiche in laboratorio.

L’intelligenza Artificiale

L’intelligenza Artificiale, un nuovo potente Antibiotico Utilizzando un algoritmo di apprendimento automatico, i ricercatori del MIT hanno identificato un nuovo potente composto antibiotico. In test di laboratorio, il farmaco ha ucciso molti dei batteri più problematici che causano malattie, tra cui alcuni ceppi resistenti a tutti gli antibiotici noti. Ha anche eliminato le infezioni in due diversi […]

Dottoressa con stetoscopio ascolta la schiena di una bambina con i capelli legati in una coda di cavallo e una sciarpa. In basso, la scritta 'Quando finisce l'infanzia?' e il logo di scienze motorie.com

Infanzia: quando finisce? E l’adolescenza?

Quando finisce l’infanzia? E quando finisce l’adolescenza? Infanzia e Adolescenza Quando finisce l’infanzia? Questa è la domanda che i ricercatori internazionali si stanno ponendo cercando di indicare le linee per i limiti di età per i servizi pediatrici in tutto il mondo. Quando finisce l’infanzia? E quando finisce l’adolescenza? Nel mondo ci sono chiare differenze sui limiti che […]

Parte inferiore del corpo di una persona che allaccia le scarpe da ginnastica vicino al mare con una borraccia blu.

Integratori di Elettroliti e Resistenza

Integratori di Elettroliti popolari Secondo i ricercatori della Stanford University School of Medicine e i loro collaboratori, non si può fare affidamento sugli integratori di elettroliti popolari con i corridori di resistenza. Piuttosto, i ricercatori hanno scoperto che con distanze di allenamento più lunghe, la minore massa corporea e l’evitamento dell’iperidratazione sono fattori più importanti […]

Live Chat
assistance banner image
Whatsapp
Messenger
800.19.35.40